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ABSTRACT
In current clinical practice, microsatellite instability (MSI) and mismatch 

repair deficiency detection is performed with MSI-PCR and immunohistochemistry. 
Recent research has produced several computational tools for MSI detection with 
next-generation sequencing (NGS) data; however a comprehensive analysis of 
computational methods has not yet been performed. In this study, we introduce a new 
MSI detection tool, MANTIS, and demonstrate its favorable performance compared 
to the previously published tools mSINGS and MSISensor. We evaluated 458 normal-
tumor sample pairs across six cancer subtypes, testing classification performance 
on variable numbers of target loci ranging from 10 to 2539. All three computational 
methods were found to be accurate, with MANTIS exhibiting the highest accuracy 
with 98.91% of samples from all six diseases classified correctly. MANTIS displayed 
superior performance among the three tools, having the highest overall sensitivity 
(MANTIS 97.18%, MSISensor 96.48%, mSINGS 76.06%) and specificity (MANTIS 
99.68%, mSINGS 99.68%, MSISensor 98.73%) across six cancer types, even with loci 
panels of varying size. Additionally, MANTIS also had the lowest resource consumption 
(<1% of the space and <7% of the memory required by mSINGS) and fastest running 
times (49.6% and 8.7% of the running times of MSISensor and mSINGS, respectively). 
This study highlights the potential utility of MANTIS in classifying samples by MSI-
status, allowing its incorporation into existing NGS pipelines.

INTRODUCTION

Microsatellites are short (1-6bp) repeating motifs, 
widely dispersed throughout the human genome [1]. 
Microsatellite instability (MSI) is a genetic phenomenon 
of somatic polymorphisms of microsatellite length, 
caused by uncorrected “slippage” of DNA fragments 
during DNA replication in cell division. MSI can arise 
from defects in the DNA mismatch repair (MMR) system 
[2]. These defects may be inherited, as with Lynch 
syndrome/hereditary nonpolyposis colorectal cancer [3], 
or may be somatically acquired, most commonly due to 
promoter hypermethylation of the MMR gene MLH1 [4]. 
Increasing evidence demonstrates that MSI is a recurrent 
somatic abnormality in several human cancers, found in 
13% of colorectal adenocarcinoma and 22-33% of uterine/

endometrial carcinoma [5]. Reliable detection of MSI is 
clinically useful as MSI-positive tumors appear more 
susceptible to immune-enhancing therapies, as observed 
in colorectal cancer for the PD-1 inhibitor pembrolizumab 
[6].

The two currently accepted assays for the detection 
of MSI are MSI-PCR of five standardized microsatellite 
loci (Bethesda panel) [7], and immunohistochemistry 
(IHC) of the MMR proteins MSH2, MSH6, MLH1 and 
PMS2. Traditionally, tumors can be classified with MSI-
PCR as microsatellite stable (MSS, 0/5 loci unstable), 
MSI-low (MSI-L, 1/5 loci unstable), or MSI-high (MSI-H,  
≥ 2/5 loci unstable) [7]. However, both of these methods 
have inherent limitations. MSI-PCR relies on a small 
set of loci that were selected based on markers from a 
single disease type, potentially excluding loci that would 
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be better predictors in other diseases and increasing the 
odds of incorrect classification [7]. Immunohistochemistry 
can be used to detect the expression of mismatch repair 
proteins, but does not directly look at the microsatellite 
loci [7]. More recently, with the increasing prevalence 
of next-generation sequencing (NGS) in cancer biology, 
several computational methods have been developed 
using either colorectal or endometrial cancer NGS data to 
determine MSI status [8, 9].

The development, refinement, and validation of 
NGS-based computational MSI calling methods have 
several research and clinical applications. NGS allows 
for the practical assessment of far more microsatellite loci 
than MSI-PCR. Importantly, computational MSI analyses 
can be integrated into existing NGS pipelines for other 
mutation types such as single nucleotide variation or 
copy number variation, as well as applied to previously 
generated NGS data for retrospective analyses. As NGS 
increases in both cost-effectiveness and prevalence, 
NGS-based methods may permit identification of MSI 
status without requiring additional clinical testing or 
patient sample processing. Lastly, NGS data is becoming 
increasingly available in tumor types that are not routinely 
tested for MSI, with potential opportunities to identify 
microsatellite instability in previously uncharacterized 
cancers. Thus, there is a need to develop tools with high 
accuracy in multiple cancer types.

In this study, we introduce a new tool, MANTIS 
(Microsatellite Analysis for Normal Tumor InStability), 
for detecting MSI status from NGS data. We compare 
MANTIS with two currently available tools, mSINGS [8] 
and MSISensor [9], and test their performance across six 
different tumor types. We also determine that the number 
of loci assessed impacts the accuracy of MSI calling 
methods, and find an optimal number of loci to analyze 
with each tool for best tool performance.

RESULTS

Evaluation of tool accuracy for detecting MSI 
status

Since mSINGS and MSISensor were each developed 
on data from single disease cohorts (COAD/READ for 
mSINGS, UCEC for MSISensor), the two cohorts were 
used for tool performance comparisons. To account for the 
possibility of suboptimal recommended cutoff thresholds 
for each of the three tools, we tested a range of thresholds 
for each tool across a test cohort consisting of both the 
COAD/READ and UCEC sample pairs (Supplemental 
Figure S1). The peak performances of each tool were 
determined, with MANTIS having 97.1% accuracy with 
the default threshold of 0.4, mSINGS reaching 96% 
accuracy with a threshold of 0.1, and MSISensor peaking 
at 95.4% accuracy with the threshold of 3.5%. The results 
indicate that MANTIS demonstrated superior performance 
over the other tools, even after accounting for the best-
case thresholds of the tools.

Having evaluated the tools with the best-case 
thresholds, their performances were evaluated with the 
tool’s recommended default cutoff thresholds (MANTIS 
0.4, mSINGS 0.2, and MSISensor 3.5%) (Supplemental 
Figure S2). MANTIS demonstrated the highest 
classification accuracy (97.1%), followed by MSISensor 
(95.4%), and mSINGS (83.4%). MANTIS and MSISensor 
both exhibited equally high sensitivity (95.4%). In 
contrast, although mSINGS was the most specific 
(100%), it demonstrated poor sensitivity (66.7%), largely 
due to poor performance over the UCEC cohort (53.1% 
sensitivity). MANTIS also exhibited high specificity 
(98.9%), performing better than MSISensor (95.5%).

To analyze disease-specific differences, results 
were compared between the COAD/READ and UCEC 
cohorts (Table 3, Supplemental Figure S3). MANTIS 

Table 1: Comparison of the MSI-calling tools mSINGS, MSISensor and MANTIS, and the algorithms used 
by each.
Tool Sample Comparison Statistical Method Scoring Approach
mSINGS Tumor vs. Baseline Z-score Per Locus
MSISensor Tumor vs. Normal Chi-square Per Locus
MANTIS Tumor vs. Normal Average distance Aggregate Instability

Table 2: Breakdown of target loci used for microsatellite status calling. The count and repeat range of each type 
is listed.
Type of Microsatellite Number of Loci Min Repeats Max Repeats Mean Repeats
Monomer 2436 3 36 15.94
Dimer 96 6 18 14.86
Trimer 4 3 8 4.75
Tetramer 2 7 8 7.5
Pentamer 1 3 3 3.0
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produced more accurate results (98.7%) than mSINGS 
(92.1%) and MSISensor (92.1%) in COAD/READ, 
whereas MSISensor was slightly more accurate (98.0%) 
than MANTIS (96.0%) in UCEC. While all three tools 
performed well with the COAD/READ data, mSINGS 
performed poorly with the UCEC data (accuracy 76.8%, 
sensitivity 53.1%). The tests showed that MANTIS had 
the most consistently accurate performance among the test 

cohort, exhibiting high sensitivity (95.4%) and specificity 
(98.9%) among the tested samples.

Consideration of data overfitting and bias

To further evaluate tool performance and to ensure 
MANTIS was not overfit to the COAD/READ and UCEC 

Table 3: Comparison of accuracy for MSI-H detection. 
mSINGS
Metric COAD/READ UCEC COAD/READ + UCEC STAD
Sensitivity 84.2% 53.1% 66.7% 92.0%
Specificity 100.0% 100.0% 100% 100.0%
Accuracy 92.1% 76.8% 83.4% 96.0%
MSISensor
Metric COAD/READ UCEC COAD/READ + UCEC STAD
Sensitivity 92.1% 98.0% 95.4% 98.0%
Specificity 92.1% 98.0% 95.5% 100.0%
Accuracy 92.1% 98.0% 95.4% 99.0%
MANTIS
Metric COAD/READ UCEC COAD/READ + UCEC STAD
Sensitivity 100.0% 91.8% 95.4% 100.0%
Specificity 97.4% 100.0% 98.9% 100.0%
Accuracy 98.7% 96.0% 97.1% 100.0%

The performance of mSINGS, MSISensor, and MANTIS over 275 COAD/READ, UCEC, and STAD sample pairs.

Figure 1: The schematic of the MANTIS analysis for MSI detection. Microsatellite loci are realigned against the reference 
genome to account for 0/1-based indexing differences. Per-locus microsatellite length distributions are determined from the normal 
and tumor BAM files by extracting locus-spanning reads; filtering out reads that fail to meet minimum length and average base quality 
requirements; determining the start position of the microsatellite motif within each read’s sequence and the number of motif repeats; 
ensuring such reads meet minimum average locus quality and aren’t prematurely truncated in the middle of a motif repeat. The generated 
normal and tumor length distributions are evaluated at each locus, with outlying length values (by default, > 3 SD from mean) removed. 
Loci with substandard coverage are also removed. The support counts at each locus are then normalized separately for the normal and tumor 
sample and the stepwise difference between each distribution is calculated. Finally, the average of all difference scores is taken to generate 
the instability score for the normal-tumor sample pair.
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cohorts, tool performance was evaluated using stomach 
adenocarcinoma (STAD) sample pairs as a blinded test 
cohort (Figure 2). All three tools performed well with 
the STAD data, with MANTIS performing the best with 
100% accuracy (Table 3), followed by MSISensor with 
99% accuracy and mSINGS with 96% accuracy (Table 3).

To evaluate the extent that tool performance was 
affected by differences in sequencing, samples that 
had been sequenced at different sequencing centers 
with potentially different protocols and practices, 
were compared. For the comparison, we evaluated 
tool performance on a selection of MSI-H sample 
pairs that were each sequenced at two different centers 
(Supplemental Table S3). All three tools showed high 
concordance (R2 > 0.99 in all cases) for the 20 UCEC 
tumor-normal pairs used in these comparisons. For the 4 
COAD/READ pairs, MSISensor and MANTIS showed 
high concordance (R2 > 0.99), however no concordance 
was observed with mSINGS (R2 = 5.52 • 10-7). This 
indicated that while MANTIS and MSISensor are less 
affected due to their paired normal-tumor comparison 
model, mSINGS requires a statistically large enough 
population to generate a baseline from.

Finally, to assess the potential utility of MANTIS as 
well as other tools for pan-cancer MSI analysis, we tested 
MANTIS, mSINGS, and MSISensor with three additional 
cohorts of cancer: esophageal carcinoma (ESCA), uterine 
carcinosarcoma (UCS), and prostate adenocarcinoma 
(PRAD) (Supplemental Table S4). All three tools reached 
100% accuracy with ESCA, and MSISensor and MANTIS 
were 100% accurate with UCS and PRAD. However, 
mSINGS only reached 50% sensitivity (and 98.1% 
accuracy) with UCS data, and had one false positive in 

PRAD (98.3% specificity and 98.3% accuracy). Testing 
with these four additional disease cohorts further 
confirmed the accuracy of MANTIS, showing it may have 
superior pan-cancer applicability over the other two tools 
being compared.

Computational performance

Since resource limitations can affect the rate 
at which computational analysis of samples can be 
performed, we used the tumor and normal samples 
of TCGA-V5-A7RE (a known ESCA MSS case) for 
evaluating the computational performance of the three 
tools, as both deduplicated BAM files were close to 10 
GB in size. We found that mSINGS performs considerably 
slower than MSISensor and MANTIS, with runtime at 
least five-fold longer (Supplemental Table S2). mSINGS 
also requires substantially more memory and disk space 
than both MSISensor and MANTIS. This is because over 
99% of the 32 GB of disk space used was temporarily 
occupied by the mpileup file created by mSINGS with 
SAMtools as an intermediate step. MANTIS exhibited 
a 20.5% speed increase when run using three threads vs. 
one thread, and MSISensor had a 12.8% slowdown when 
using three threads (Supplemental Table S2). The lack 
of expected three-fold performance scaling with either 
tool may be due to testing in an I/O-bound computing 
environment. The lower resource consumption and faster 
performance of both MANTIS and MSISensor indicated 
they may be better suited than mSINGS for a resource-
limited environment, with MANTIS exhibiting the fastest 
runtimes.

Figure 2: The cumulative distribution of MSI scores reported by mSINGS, MSISensor, and MANTIS for 275 COAD/
READ, UCEC and STAD tumor-normal data pairs. The dotted lines are the tools’ respective thresholds to call a tumor MSI 
positive.
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Accuracy of tools varies with both the number 
and specified loci evaluated

To assess the effect of considering different 
numbers and selective microsatellite loci on MSI 
analysis, we identified the 10, 20, 30, 40, 50, 100, 250, 
500 and 1000 loci most predictive of a sample’s status 
across COAD/READ, UCEC and STAD cohorts, for 
mSINGS, MSISensor and MANTIS (Supplemental File 
S5). Each tool was then run with its list of top loci from 
all three cancer types (Figure 3, Supplemental Figure 
S4). Notably, with its top 40 loci, mSINGS was more 
accurate than MSISensor and MANTIS with their top 40 
loci (98.2%, 91.8% and 97.4% accuracy, respectively) 
(Figure 3). mSINGS accuracy at 40 loci was higher with 
all three cancer types (Supplemental Table S5). In general, 
mSINGS performed better with fewer loci, MSISensor 
performed better with more loci, and MANTIS performed 
well consistently across a broader range of tested loci.

Previous studies have suggested that different MSI 
positive cancers may have specific microsatellite loci 
that are most commonly unstable [10, 11]. For each MSI 
analysis tool, we sought to account for this by identifying 
the top-performing loci in each cancer type separately. 
Unlike in the analysis above, the 10, 20, 30, 40, 50, 100, 
250, 500 and 1000 best-performing loci for each tool were 
determined for each COAD/READ, UCEC and STAD 
cohort separately (Supplemental File S5). Each tool 
was then run over each cancer type, with respective top 
tool-specific and cancer-specific loci (Figure 4). Trends 
described in the previous analysis remained the same, 
with performance slightly higher throughout. However 
in UCEC at 40 loci, mSINGS performed better than 

MSISensor and MANTIS (98.0% accuracy, vs. 89.9% 
and 94.9% respectively). Also, MANTIS and mSINGS 
both performed notably better (98.7%) than MSISensor 
(83.6%) when evaluating COAD/READ samples with 
40 loci. The experiments show that the choice of loci 
being evaluated plays a part in tool performance. While 
an optimized target panel may allow all tools to perform 
well, MANTIS exhibits the most stable performance 
even without such optimizations, providing accurate 
performance using existing whole-exome data.

DISCUSSION

We have developed a new tool, MANTIS, 
for detecting MSI status using paired tumor-normal 
sequencing data. Unlike other tools, MANTIS analyzes 
the instability of a normal-tumor sample pair as an 
aggregate of loci instead of individual loci differences. 
The approach allows the tool to evaluate the general 
instability present in a tumor sample, using the data from 
the corresponding normal sample as an error-correcting 
baseline. Furthermore, by pooling the scores of all the 
loci and treating the average as the instability score, the 
evaluation benefits from the law of large numbers by 
reducing the impact that sequencing errors or poorly 
performing loci may have on the results.

We also analyzed the performance of MANTIS, 
mSINGS, and MSISensor with samples from six cancer 
types. Overall, MANTIS demonstrated high accuracy 
across a range of cancer types, and in many cases with 
restricted sets of well-performing loci. Prior tools have 
previously been applied to only one of two cancer types, 
endometrial (MSISensor) and colorectal (mSINGS). 
With their recommended thresholds, mSINGS and 

Figure 3: The performance of mSINGS, MSISensor and MANTIS with their respective top-performing loci. The 
performance of each tool in each COAD/READ, UCEC and STAD cohorts was evaluated with top tool-specific loci (10-1000). The results 
with 2539 loci (without loci shortlisting) are included for reference.
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MSISensor are less robust across a range of loci numbers 
than MANTIS. This appears to be due to the inclusion of 
poorly performing loci with low sensitivity in the full set 
of 2539 loci. mSINGS and MSISensor call loci unstable 
or stable, and MANTIS calculates the instability at each 
locus. Suboptimal loci may be missed entirely by mSINGS 
and MSISensor, but still have some increased instability 
in MSI-H vs. MSS samples. Niu et al. recommend 
a relatively low threshold of 3.5 for MSISensor (vs. 

20% used by mSINGS and MSI-PCR). This seems to 
effectively compensate for these poorly performing loci 
with a large panel, but greatly reduces the specificity of 
MSISensor when these loci are removed, as in the lists 
of top-performing loci. Conversely, the threshold of 0.2 
(20%) used by mSINGS is effective with a smaller panel 
of well-performing loci such as the mSINGS authors’ 
panel MSIplus [11], but this threshold limits the sensitivity 
of mSINGS with a larger panel (Table 3).

Figure 4: The performance of mSINGS, MSISensor and MANTIS with lists of loci top-performing in COAD/READ, 
UCEC or STAD. For each tool and for each cancer type (COAD/READ, UCEC or STAD), the top-performing loci were determined, and 
the performance of each tool in each cancer type was evaluated with lists of top loci (particular to only that cancer type) of varying length. 
The results with 2539 loci (without loci shortlisting) are included for reference. Results are broken down by cancer type. 
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Results from UCEC were least concordant with the 
above trends. With the full set of 2539 loci, MSISensor 
performed best, followed closely by MANTIS and 
distantly by mSINGS. This may potentially arise from 
differences in the microsatellite instability signatures 
between COAD/READ and UCEC, the existence of 
which is supported by previous findings [12, 13]. A recent 
overview of microsatellite instability across multiple 
cancer types by Hause et al. further found significant 
variance in the number of unstable loci present between 
samples from different diseases [14]. Another potential 
explanation is that, because mSINGS was developed only 
with COAD/READ data and MSISensor only with UCEC 
data, these tools may be overfit to those cancer types. 
MANTIS, in contrast, was developed and tested using 
data from multiple cancer types, alleviating the potential 
overfitting issues that may occur when only including data 
from a single disease.

Like any NGS-based method, MANTIS 
performance depends on read coverage, a limitation 
not shared by MSI-PCR and IHC. Most current clinical 
guidelines for management of MSI positive tumors are 
based on a percentage of unstable loci. Current approaches 
for MSI detection (such as mSINGS, MSISensor, and 
MSI-PCR) use a discrete fraction of unstable loci to 
determine to make calls on the status of a sample, but 
MANTIS provides a continuously valued MSI score that 
may provide greater utility in determining the level of MSI 
present in a tumor. Findings by Hause et al. give further 
credence to this hypothesis, indicating that microsatellite 
instability may best be viewed as a scaled genotype rather 
than a simple binary positive or negative classification 
[14].

We chose MANTIS, mSINGS, and MSISensor for 
this study since these three tools use NGS to directly assess 
microsatellite loci in DNA. Other NGS-based methods 
have been described that indirectly assess MSI through 
analysis of somatic mutations. MSIseq [15] employs 
machine learning classification techniques to correlate 
indels throughout repeat regions to MSI status. Stadler et 
al. [16] describe a method utilizing a custom NGS assay, 
and correlating somatic missense and nonsense mutations 
in protein-coding regions with MSI status. Additionally, 
Lu et al. [17] describe an algorithm for determining MSI 
status from RNA-seq data. MSIseq was not included in 
this study as it is a classifier that only reports MSI-H vs. 
non-MSI-H, without a score or percentage, or information 
about the instability of particular loci. The Stadler et al. 
and Lu et al. methods were not included since they cannot 
be run with the same whole exome sequencing input data, 
requiring a custom deep-sequenced panel and RNA-seq 
data, respectively.

Currently, MMR and MSI status are determined in 
the clinical setting with IHC and MSI-PCR. Conventional 
multiplex MSI-PCR testing is reported to have 97% 
sensitivity and 95% specificity [18]. IHC is reported 

to have 92.4% sensitivity and 99.6% specificity [36]. 
MSI-PCR with the standard five Bethesda loci is well 
described for COAD/READ and UCEC [4], but has been 
shown to perform less accurately in other diseases such 
as acute myeloid leukemia [10], and may miss MSI in 
other tumor types. Consideration of only five loci renders 
conventional MSI-PCR highly susceptible to errors in 
processing or interpretation of any one locus, and adding 
additional loci increases cost. IHC is able to effectively 
determine the presence or absence of the mismatch repair 
proteins targeted. Unfortunately, IHC cannot detect loss-
of-function mutations that do not affect the antigenicity 
of targeted proteins, or changes to MMR proteins not 
targeted [2]. Additionally, MSI-PCR and IHC require 
human interpretation, unlike computational NGS-based 
methods. Lastly, both MSI-PCR and IHC are clinical 
laboratory tests that consume fractions of patient tumor 
samples, unlike computational methods that could be 
multiplexed with other NGS assays for detecting somatic 
mutations.

As a tumor vs. normal algorithm, MANTIS avoids 
a time-consuming baseline generation step, eliminates 
potential baseline bias and allows processing of samples 
from different sequencing pipelines or tumor types without 
requiring a different baseline for each. Indeed, sequencing 
center bias may explain the discordance with mSINGS 
results from the 4 COAD/READ pairs sequenced at both 
BCM and BI (Supplemental Table S3). However, matched 
normal DNA is not always feasibly available for clinical 
laboratories that only sequence tumor samples, thus a 
tumor-only method such as mSINGS could reduce both 
sequencing time and cost to the patient.

The results of this study support several potential 
directions for future investigation. The accuracy of 
MANTIS with small numbers of loci suggests that 
MANTIS could be useful with a targeted sequencing panel 
designed for MSI testing in the clinic. We have shown that 
MANTIS performs well in six cancer types; however it 
(along with other MSI tools) should be further evaluated 
in a wider variety of cancers. Of particular interest would 
be evaluation of MANTIS in neurologic, hematologic, 
pediatric and other malignancies, in which the landscape 
of MSI is considerably less well described than with 
COAD/READ and UCEC. With further investigation, 
incorporating MANTIS into clinical NGS pipelines may 
permit MSI testing on a large scale, and improve access to 
emerging therapies that exploit microsatellite instability 
in cancer.
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MATERIALS AND METHODS

MANTIS

MANTIS is a tool for identifying microsatellite 
instability in paired tumor-normal patient samples (Figure 
1). It is written as a Python program, utilizing the NumPy 
(developed with version 1.6.2) and Pysam (developed 
with version 0.8.3) libraries. Additionally, it requires 
the reference genome (developed with hg19) [10] in 
FASTA format to perform alignment of reads spanning 
the microsatellite loci. The matched normal and tumor 
inputs are required as indexed BAM files, aligned with 
any DNA sequence aligner. The targeted loci are required 
in a 6-column BED file, with the fourth column containing 
the motif of the microsatellite loci being targeted along 
with its repeat count in the reference genome, e.g. (AC)12. 
MANTIS includes a bundled C++ program, RepeatFinder, 
used to identify microsatellite loci within a reference 
genome, and create the appropriate BED file. This BED 
file can be further filtered with BEDTools [20] for regions 
of interest. Multi-threading is supported and encouraged 
for larger samples, but is not necessary. More information 
about the parameters supported by MANTIS is included in 
the manual available with the software.

Targeted loci are first read from the provided BED 
file and realigned against the provided reference genome 
to account for differences between 0- and 1- based 
indexing. One locus at a time, the tool extracts overlapping 
reads from the tumor and normal BAM files and performs 
an initial quality control step to ensure the reads are of 
sufficient sequence length, meet a minimum average base 
quality score, and cover the entire targeted locus. Reads 
passing the initial filtering step are inspected individually 
to determine the starting position of the microsatellite 
motif within the read’s sequence and the total number of 
repeats is determined by pattern matching the continuous 
motif pattern from that starting point. Once the repeat 
count is determined, a secondary quality control step takes 
place, ensuring that the locus was not truncated before 
reaching the end of the read’s sequence, and that the 
microsatellite locus region has a sufficiently high average 
base quality score. The supporting read count for each of 
the repeat lengths is determined separately for the tumor 
and normal files to generate per-locus motif repeat count 
values.

Once the repeat counts are generated for each locus, 
a per-locus quality control step takes place. The repeat 
lengths for both the normal and tumor file are evaluated 
separately, with values too far from the mean (by default, 
beyond 3 standard deviations) discarded as outliers. After 
outliers are removed, each locus is checked for a total 
number of supporting reads to ensure there is sufficient 
support to generate a statistically significant distribution 

for both the normal and tumor files. Loci with substandard 
coverage are discarded. 

The filtered locus repeat count data is then passed to 
the scoring algorithm that generates an instability score for 
the sample pair. First, each locus is evaluated separately, 
with the normal and tumor read distributions normalized 
to a fraction of each one’s total reads, to account for any 
differences in sequencing depth and coverage. Then, 
absolute value of the stepwise difference between the 
tumor and normal distributions is determined:

Where d = distance score, RT = repeat counts present 
in tumor, RN = repeat counts present in normal, Tr = 
normalized read count in tumor supporting repeat of length 
r, Nr = normalized read count in normal supporting repeat 
of length r. Once the scores for each locus are assigned, 
the average of all the locus instability scores is calculated, 
to provide a single numerical value representing the 
average aggregate instability present in the sample. Scores 
reported range from 0.0 (entirely stable) to 2.0 (entirely 
unstable). The MANTIS software and manual are freely 
available for download at https://github.com/OSU-SRLab/
MANTIS.

Comparison of tools

In addition to MANTIS, we tested mSINGS 
(commit #2e00b6) by Salipante et al. [8] and MSISensor 
(version 0.2) by Niu et al. [9] (Table 1). mSINGS 
compares a tumor sample to a pooled normal baseline, 
generated from the distribution of unique alleles at each 
microsatellite locus in many normal samples. MSISensor, 
like MANTIS, compares a tumor sample with its matched 
normal sample. Both mSINGS and MSISensor determine 
the stability of each locus analyzed. mSINGS calls a locus 
unstable if the Z-score of the number of unique alleles at 
the locus relative to the baseline distribution exceeds a 
threshold (default: 2). MSISensor calls a locus unstable if 
a chi-square test of the repeat lengths in the tumor sample 
vs. the normal sample is statistically significant, after 
Benjamini correction [21]. Both tools then call the sample 
MSI-H or MSS if the percentage of unstable loci exceeds 
a threshold.

Tool parameters

mSINGS was run with Python 2.7.1, VarScan 2.3.6 
[22, 23] and SAMtools 0.1.18 [24]. The wrapper script 
provided with mSINGS was modified (available upon 
request) to remove its dependency on SCons (http://scons.
org/). We generated separate pooled normal baselines 
from all normal samples within a particular cancer 
type, according to the mSINGS documentation. The 
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microsatellite loci-containing region BED and .intervals 
files packaged with mSINGS were used, which contained 
2539 loci, as they are appropriate for whole-exome TCGA 
analyses according to the mSINGS documentation. 

MSISensor was slightly modified to output sites 
that were not called with somatic microsatellite instability 
along with its other output files (patch files available upon 
request), and compiled from source. It was run over the 
test data with the following settings: single-threaded, 
minimal homopolymer size 1, and minimal microsatellite 
size 1. All other options were left at their defaults. The 
microsatellite loci-containing region BED file packaged 
with mSINGS was used for fairness of comparison, as 
well as to restrict MSISensor to exomic regions.

MANTIS was run over the test data with three 
threads. The recommended quality settings for whole-
exome data were used, as described in the included 
MANTIS manual. The microsatellite BED file was derived 
from the one provided by mSINGS.

Target loci selection

The 2539 target loci being analyzed were derived 
from the ones provided with mSINGS and captured 
in whole exome sequencing datasets, and used with all 
three tools. Most of the targeted loci (see Table 2) were 
monomer homopolymers of adenine or thymine (95.08%), 
with only 4.04% of loci being repeats of dimers or longer 
polymers. This bias towards monomer repeats was 
expected since intronic mononucleotide repeats outnumber 
other repeat regions in the human genome [25]. 

Sample data

In this study, we used data from six cancer types: 76 
colon and rectal adenocarcinomas (COAD/READ) [26], 
99 uterine corpus endometrial carcinomas (UCEC) [27], 
100 gastric adenocarcinomas (STAD) [28], 71 esophageal 
carcinomas (ESCA), 53 uterine carcinosarcomas (UCS) 
[29], and 59 prostate adenocarcinomas (PRAD) [30]. We 
define a “sample” as a single BAM and its accompanying 
BAI index file, for a tumor or a normal. We define a “pair” 
as two samples; a tumor and its matched normal, and 
define a “cohort” as all samples within a cancer type, for 
a total of 6 cohorts.

Data for all cohorts except PRAD were downloaded 
from the Cancer Genomics Hub (CGHub), using the 
CGHub-provided client GeneTorrent [31]. All samples 
were downloaded in the BAM format, pre-aligned 
to GRCh37/hg19 [19]. 76 COAD/READ pairs were 
downloaded, comprised of 38 MSI-H and 38 MSS. 
COAD/READ data was sequenced at the Baylor College 
of Medicine (BCM) and the Washington University 
Genome Sequencing Center (WUGSC) (Supplemental 
Table S1B). 99 UCEC pairs were downloaded, comprised 

of 49 MSI-H and 50 MSS. All UCEC pairs were sequenced 
at WUGSC. Next, 100 STAD pairs were downloaded; 50 
MSI-H and MSS. All STAD pairs were sequenced at the 
Broad Institute of MIT and Harvard (BI). The primary 
authors were blinded to the MSI status of these samples 
until after initial analysis with mSINGS, MSISensor and 
MANTIS was completed. Finally, 71 ESCA pairs were 
downloaded from TCGA; 2 MSI-H and 69 MSS, and 
53 UCS pairs were downloaded; 2 MSI-H and 51 MSS. 
All ESCA and UCS pairs were sequenced at BI. PRAD 
data was downloaded from dbGaP (accession phs000915.
v1.p1) [32] as FASTQ files, using the SRA toolkit [33]. 
All 59 available PRAD pairs were downloaded; 1 MSI 
positive and 58 MSI negative (according to the original 
study for which these samples were sequenced, which only 
differentiated between MSI positive and MSI negative). 
PRAD data was sequenced at BI and the University of 
Michigan (UM) (Supplemental Table S1C). Alignment to 
hg19 was performed with BWA 0.6.2 [34].

Each of the 916 BAM files (from the 458 tumor-
normal pairs in all six cancer types) were sorted and 
indexed with SAMtools 0.1.18. Deduplication was 
performed with Picard Tools 1.84 (http://broadinstitute.
github.io/picard/), and facilitated with GNU Parallel [35]. 
The deduplicated BAM files were used for all downstream 
analyses. Samples used in these analyses are summarized 
in Supplemental Table S1A, Supplemental File S1.

Tool performance evaluation

mSINGS, MSISensor and MANTIS were first run 
on all 175 tumor-normal pairs from COAD/READ and 
UCEC (Supplemental File S2). A threshold was used 
for each tool, above which a tumor-normal pair is called 
MSI positive. For mSINGS, 0.2 (20% of loci called 
unstable) was used as the threshold for differentiation of 
MSI positive from MSS predictions, as this is consistent 
with both MSI-PCR scoring and the threshold used 
by Salipante et al. A threshold of 3.5% (of loci called 
unstable) was used for MSISensor, as recommended by 
Niu et al. For MANTIS, a threshold of 0.4 (average of 
loci difference scores > 0.4) performed best in testing 
(see: Results; Relative tool performance), and was 
used for other analyses. For each tool, the number of 
true positives, false positives, true negatives, and false 
negatives was calculated with respect to MSI-PCR status 
as a gold standard, and this was used to calculate the 
sensitivity, specificity, error rate, and accuracy of each tool 
both overall and within each cancer type. Error rate was 
calculated as (incorrect calls / total calls), and accuracy as 
(1 - error rate = correct calls / total calls). Note that error 
rate and accuracy depend on the samples being tested, and 
cannot be generalized to other data sets, as can sensitivity 
and specificity. 95% confidence intervals for sensitivity 
and specificity were calculated using the Wilson score 
interval with continuity correction [36]. In addition, ranges 
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of thresholds were tested for all three tools in order to 
determine which thresholds provided optimal performance 
with the COAD/READ and UCEC test data, allowing 
comparison of best-case performance. 300 thresholds 
ranging from 0.001 to 0.3 were tested for mSINGS, 400 
thresholds ranging from 0.1% to 40% were tested for 
MSISensor, and 600 thresholds ranging from 0.001 to 0.6 
were tested for MANTIS. After a threshold of 0.4 was 
chosen for MANTIS, we ran mSINGS, MSISensor and 
MANTIS over the 100 STAD, 71 ESCA, 53 UCS and 59 
PRAD tumor-normal pairs. Tool parameters were selected 
and performance analyses were performed as described 
earlier.

For each tool, we measured potential bias arising 
from differences in sequencing and alignment protocols at 
different sequencing centers. In addition to the sample data 
used for tool performance comparison, TCGA data from 
4 tumor-normal COAD/READ MSI-H pairs sequenced 
at both BI and BCM, as well as from 20 tumor-normal 
UCEC MSI-H pairs sequenced at both BI and WUGSC, 
was downloaded and preprocessed as earlier (see: Sample 
data) (Supplemental File S3). After deduplication, these 
pairs were analyzed with mSINGS, MSISensor and 
MANTIS. MSISensor and MANTIS were run with the 
parameters described earlier (see: Tool parameters). For 
mSINGS, the normal BAM files were used to generate 
separate baselines for each cancer type and sequencing 
center.

In addition to evaluating the statistical performance 
of each tool, we also evaluated their computational 
performance (Supplemental Table S2). All three tools 
were profiled with the runtime and memory usage 
metrics supplied by the PBS (Portable Batch System) 
cluster queueing system. MSISensor and MANTIS were 
tested with one and three threads to evaluate changes in 
performance (mSINGS does not support multithreading).

Loci number comparison

For each of the three tools tested, the top-performing 
10, 20, 30, 40, 50, 100, 250, 500 and 1000 microsatellite 
loci within the COAD/READ, UCEC and STAD samples 
were determined, individually within each cancer type and 
across all three cohorts. ESCA, UCS and PRAD were not 
included in this as only five MSI-H cases were available 
from these cancer types. To determine the top n loci for 
mSINGS and MSISensor, the accuracy of each locus was 
calculated as if only that locus were to be used to call the 
MSI status of each tumor sample. For MANTIS, since it 
calculates instability scores instead of assigning per-locus 
stability statuses, a difference of averages was calculated 
for each locus, defined as:

Where a = difference of averages, H = set of MSI-H 

samples that cover the locus, S = set of MSS samples that 
cover the locus, and di = distance score of the locus in 
sample i. To compensate for varying locus coverage across 
samples, this score (accuracy or difference of averages) 
was then multiplied by the square of the proportion of 
pairs that had sufficient read coverage at that locus to 
consider it, as follows:

Where l = locus score, a = accuracy or difference 
of averages, and c = proportion of samples that cover the 
locus. This yielded a performance score for each locus, 
which allowed all 2539 loci to be ranked. The sensitivity, 
specificity, error rate, and accuracy of each tool with each 
loci list was then calculated, both for all three of these 
cancer types and overall (Supplemental File S4).

Computing resources

Alignment, deduplication, MSI calling with all three 
tools, and performance calculations were performed on the 
Oakley supercomputer at the Ohio Supercomputer Center 
(https://www.osc.edu/supercomputing/computing/oakley). 
Figures were generated using GraphPad Prism (version 
6.07) and Microsoft® Excel™ 2010. All other performance 
calculations were performed with custom Perl scripts and 
Excel™.

ACKNOWLEDGMENTS

We would like to acknowledge Pelotonia, the 
Prostate Cancer Foundation, the American Lung 
Association, the American Cancer Society, The 
Cancer Genome Atlas, Stand Up To Cancer, the Ohio 
Supercomputer Center (OSC), and the Comprehensive 
Cancer Center (CCC) at the Ohio State University 
Wexner Medical Center. The results published here are in 
part based upon data generated by the TCGA Research 
Network. We are grateful for administrative support from 
Jenny Badillo.

FUNDING

This work was supported by the American Cancer 
Society [grant number MRSG-12-194-01-TBG]; the 
Prostate Cancer Foundation; the National Human Genome 
Research Institute [grant number UM1HG006508]; the 
National Cancer Institute [grant number UH2CA202971]; 
the American Lung Association; Pelotonia; and Fore 
Cancer Research. Funding for open access charge: 
American Cancer Society.



Oncotarget11www.impactjournals.com/oncotarget

Editorial note 

This paper has been accepted based in part on peer-
review conducted by another journal and the authors’ 
response and revisions as well as expedited peer-review 
in Oncotarget.

REFERENCES

1. Kelkar YD, Strubczewski N, Hile SE, Chiaromonte F, 
Eckert KA and Makova KD. What is a microsatellite: a 
computational and experimental definition based upon 
repeat mutational behavior at A/T and GT/AC repeats. 
Genome Biol Evol. 2010; 2:620-635.

2. Shia J. Evolving approach and clinical significance of 
detecting DNA mismatch repair deficiency in colorectal 
carcinoma. Semin Diagn Pathol. 2015; 32(5):352-361.

3. Aaltonen LA, Peltomäki P, Leach FS, Sistonen P, 
Pylkkänen L, Mecklin JP, Järvinen H, Powell SM, Jen J 
and Hamilton SR. Clues to the pathogenesis of familial 
colorectal cancer. Science. 1993; 260(5109):812-816.

4. Armaghany T, Wilson JD, Chu Q and Mills G. Genetic 
alterations in colorectal cancer. Gastrointest Cancer Res. 
2012; 5(1):19-27.

5. Dudley JC, Lin MT, Le DT and Eshleman JR. Microsatellite 
Instability as a Biomarker for PD-1 Blockade. Clin Cancer 
Res. 2016; 22(4):813-820.

6. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling 
H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru 
D, Biedrzycki B, Donehower RC, Zaheer A, et al. PD-1 
Blockade in Tumors with Mismatch-Repair Deficiency. N 
Engl J Med. 2015; 372(26):2509-2520.

7. Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, 
Eshleman JR, Burt RW, Meltzer SJ, Rodriguez-Bigas MA, 
Fodde R, Ranzani GN and Srivastava S. A National Cancer 
Institute Workshop on Microsatellite Instability for cancer 
detection and familial predisposition: development of 
international criteria for the determination of microsatellite 
instability in colorectal cancer. Cancer Res. 1998; 
58(22):5248-5257.

8. Salipante SJ, Scroggins SM, Hampel HL, Turner EH and 
Pritchard CC. Microsatellite instability detection by next 
generation sequencing. Clin Chem. 2014; 60(9):1192-1199.

9. Niu B, Ye K, Zhang Q, Lu C, Xie M, McLellan MD, Wendl 
MC and Ding L. MSIsensor: microsatellite instability 
detection using paired tumor-normal sequence data. 
Bioinformatics. 2014; 30(7):1015-1016.

10. Faulkner RD, Seedhouse CH, Das-Gupta EP and 
Russell NH. BAT-25 and BAT-26, two mononucleotide 
microsatellites, are not sensitive markers of microsatellite 
instability in acute myeloid leukaemia. Br J Haematol. 
2004; 124(2):160-165.

11. Hempelmann JA, Scroggins SM, Pritchard CC and 
Salipante SJ. MSIplus for Integrated Colorectal Cancer 

Molecular Testing by Next-Generation Sequencing. J Mol 
Diagn. 2015; 17(6):705-714.

12. Alhopuro P, Sammalkorpi H, Niittymäki I, Biström M, 
Raitila A, Saharinen J, Nousiainen K, Lehtonen HJ, 
Heliövaara E, Puhakka J, Tuupanen S, Sousa S, Seruca 
R, et al. Candidate driver genes in microsatellite-unstable 
colorectal cancer. Int J Cancer. 2012; 130(7):1558-1566.

13. Kim TM, Laird PW and Park PJ. The landscape of 
microsatellite instability in colorectal and endometrial 
cancer genomes. Cell. 2013; 155(4):858-868.

14. Hause RJ, Pritchard CC, Shendure J and Salipante SJ. 
Classification and characterization of microsatellite 
instability across 18 cancer types. Nat Med. 2016; 
22(11):1342-1350.

15. Huang MN, McPherson JR, Cutcutache I, Teh BT, 
Tan P and Rozen SG. MSIseq: Software for Assessing 
Microsatellite Instability from Catalogs of Somatic 
Mutations. Sci Rep. 2015; 5:13321.

16. Stadler ZK, Battaglin F, Middha S, Hechtman JF, Tran 
C, Cercek A, Yaeger R, Segal NH, Varghese AM, Reidy-
Lagunes DL, Kemeny NE, Salo-Mullen EE, Ashraf A, 
et al. Reliable Detection of Mismatch Repair Deficiency 
in Colorectal Cancers Using Mutational Load in Next-
Generation Sequencing Panels. J Clin Oncol. 2016; 
34(18):2141-2147.

17. Lu Y, Soong TD and Elemento O. A novel approach for 
characterizing microsatellite instability in cancer cells. 
PLoS One. 2013; 8(5):e63056.

18. Zhang X and Li J. Era of universal testing of microsatellite 
instability in colorectal cancer. World J Gastrointest Oncol. 
2013; 5(2):12-19.

19. Lander ES, Linton LM, Birren B, Nusbaum C, Zody 
MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh 
W, Funke R, Gage D, Harris K, et al. Initial sequencing 
and analysis of the human genome. Nature. 2001; 
409(6822):860-921.

20. Quinlan AR and Hall IM. BEDTools: a flexible suite of 
utilities for comparing genomic features. Bioinformatics. 
2010; 26(6):841-842.

21. Benjamini Y and Hochberg Y. Controlling the False 
Discovery Rate: A Practical and Powerful Approach to 
Multiple Testing. Journal of the Royal Statistical Society 
Series B (Methodological). 1995; 57(1):289-300.

22. Koboldt DC, Chen K, Wylie T, Larson DE, McLellan 
MD, Mardis ER, Weinstock GM, Wilson RK and Ding L. 
VarScan: variant detection in massively parallel sequencing 
of individual and pooled samples. Bioinformatics. 2009; 
25(17):2283-2285.

23. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, 
Lin L, Miller CA, Mardis ER, Ding L and Wilson RK. 
VarScan 2: somatic mutation and copy number alteration 
discovery in cancer by exome sequencing. Genome Res. 
2012; 22(3):568-576.

24. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer 



Oncotarget12www.impactjournals.com/oncotarget

N, Marth G, Abecasis G, Durbin R and Subgroup GPDP. 
The Sequence Alignment/Map format and SAMtools. 
Bioinformatics. 2009; 25(16):2078-2079.

25. Tóth G, Gáspári Z and Jurka J. Microsatellites in different 
eukaryotic genomes: survey and analysis. Genome Res. 
2000; 10(7):967-981.

26. Network TCGAR. Comprehensive molecular 
characterization of human colon and rectal cancer. Nature. 
2012; 487(7407):330-337.

27. Network TCGAR. Integrated genomic characterization of 
endometrial carcinoma. Nature. 2013; 497(7447):67-73.

28. The Cancer Genome Atlas Research N. Comprehensive 
molecular characterization of gastric adenocarcinoma. 
Nature. 2014; 513(7517):202-209.

29. The Cancer Genome Atlas Research N, Weinstein JN, 
Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, 
Ellrott K, Shmulevich I, Sander C and Stuart JM. The 
Cancer Genome Atlas Pan-Cancer analysis project. Nat 
Genet. 2013; 45(10):1113-1120.

30. Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro 
RJ, Mosquera JM, Montgomery B, Taplin ME, Pritchard 
CC, Attard G, Beltran H, Abida W, Bradley RK, et al. 
Integrative clinical genomics of advanced prostate cancer. 
Cell. 2015; 161(5):1215-1228.

31. Wilks C, Cline MS, Weiler E, Diehkans M, Craft B, Martin 
C, Murphy D, Pierce H, Black J, Nelson D, Litzinger B, 
Hatton T, Maltbie L, et al. The Cancer Genomics Hub 
(CGHub): overcoming cancer through the power of 
torrential data. Database (Oxford). 2014; 2014.

32. Mailman MD, Feolo M, Jin Y, Kimura M, Tryka K, 
Bagoutdinov R, Hao L, Kiang A, Paschall J, Phan L, 
Popova N, Pretel S, Ziyabari L, et al. The NCBI dbGaP 
database of genotypes and phenotypes. Nat Genet. 2007; 
39(10):1181-1186.

33. Leinonen R, Sugawara H, Shumway M and Collaboration 
INSD. The sequence read archive. Nucleic Acids Res. 2011; 
39(Database issue):D19-21.

34. Li H and Durbin R. Fast and accurate short read alignment 
with Burrows-Wheeler transform. Bioinformatics. 2009; 
25(14):1754-1760.

35. Tange O. (2011). GNU Parallel - The Command-Line 
Power Tool. ;login: The USENIX Magazine, pp. 42-47.

36. Newcombe RG. Two-sided confidence intervals for the 
single proportion: comparison of seven methods. Stat Med. 
1998; 17(8):857-872.


